Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression
Nikolaos Koutsouleris123, Dominic B Dwyer1, Franziska Degenhardt45, Carlo Maj6, Maria Fernanda Urquijo-Castro1, Rachele Sanfelici17, David Popovic18, Oemer Oeztuerk18, Shalaila S Haas9, Johanna Weiske1, Anne Ruef1, Lana Kambeitz-Ilankovic10, Linda A Antonucci11, Susanne Neufang12, Christian Schmidt-Kraepelin12, Stephan Ruhrmann10, Nora Penzel10, Joseph Kambeitz10, Theresa K Haidl10, Marlene Rosen10, Katharine Chisholm13, Anita Riecher-Rössler14, Laura Egloff14, André Schmidt14, Christina Andreou14, Jarmo Hietala15, Timo Schirmer16, Georg Romer17, Petra Walger18, Maurizia Franscini19, Nina Traber-Walker19, Benno G Schimmelmann2021, Rahel Flückiger21, Chantal Michel21, Wulf Rössler22, Oleg Borisov6, Peter M Krawitz6, Karsten Heekeren2223, Roman Buechler2224, Christos Pantelis25, Peter Falkai12, Raimo K R Salokangas15, Rebekka Lencer2627, Alessandro Bertolino28, Stefan Borgwardt1427, Markus Noethen4, Paolo Brambilla2930, Stephen J Wood3132, Rachel Upthegrove13, Frauke Schultze-Lutter1233, Anastasia Theodoridou22, Eva Meisenzahl12, PRONIA Consortium
2021 Feb 1; 78(2):195-209.
doi: 10.1001/jamapsychiatry.2020.3604.
- PMID: 33263726
- PMCID: PMC7711566
- DOI: 10.1001/jamapsychiatry.2020.3604